double of $k[x]$

Dear Dror,
It seems to me we overlooked something rather simple:
The universal invariant corresponding to the Drinfeld double of the polynomial algebra gives the linking matrix of tangles via the R-matrix $\exp (x y)$
The twisted double, twisting by the homology representation, should give 1/Alexander.
Unlike the exterior algebra case where we get Alexander, perturbing the symmetric algebra construction seems doable. This must be the one-step procedure that we've been looking for.

The twist is by the automorphism alpha $(\mathrm{x})=\mathrm{t} \mathrm{x}$ and alpha $(\mathrm{y})=1 / \mathrm{t}$
All Gaussian techniques we developed and implemented still apply because alpha has generating function $\exp (\mathrm{t} x+\mathrm{y} / \mathrm{t})$. The bracket in the double comes out to be something like $[x, y]=1-\mathrm{t}$. A relation to the equivariant linking number seems near too.
For more on the twisted double construction see my paper with Daniel,
https:///robert.perso.math.cnrs.fr/kos.html
Best,
Roland

